Controlling small guanine-nucleotide-exchange factor function through cytoplasmic RNA intramers.

نویسندگان

  • G Mayer
  • M Blind
  • W Nagel
  • T Böhm
  • T Knorr
  • C L Jackson
  • W Kolanus
  • M Famulok
چکیده

ADP-ribosylation factor (ARF) GTPases and their regulatory proteins have been implicated in the control of diverse biological functions. Two main classes of positive regulatory elements for ARF have been discovered so far: the large Sec7/Gea and the small cytohesin/ARNO families, respectively. These proteins harbor guanine-nucleotide-exchange factor (GEF) activity exerted by the common Sec7 domain. The availability of a specific inhibitor, the fungal metabolite brefeldin A, has enabled documentation of the involvement of the large GEFs in vesicle transport. However, because of the lack of such tools, the biological roles of the small GEFs have remained controversial. Here, we have selected a series of RNA aptamers that specifically recognize the Sec7 domain of cytohesin 1. Some aptamers inhibit guanine-nucleotide exchange on ARF1, thereby preventing ARF activation in vitro. Among them, aptamer M69 exhibited unexpected specificity for the small GEFs, because it does not interact with or inhibit the GEF activity of the related Gea2-Sec7 domain, a member of the class of large GEFs. The inhibitory effect demonstrated in vitro clearly is observed as well in vivo, based on the finding that M69 produces similar results as a dominant-negative, GEF-deficient mutant of cytohesin 1: when expressed in the cytoplasm of T-cells, M69 reduces stimulated adhesion to intercellular adhesion molecule-1 and results in a dramatic reorganization of F-actin distribution. These highly specific cellular effects suggest that the ARF-GEF activity of cytohesin 1 plays an important role in cytoskeletal remodeling events of lymphoid cells.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic cycling of eIF2 through a large eIF2B-containing cytoplasmic body

The eukaryotic translation initiation factor 2B (eIF2B) provides a fundamental controlled point in the pathway of protein synthesis. eIF2B is the heteropentameric guanine nucleotide exchange factor that converts eIF2, from an inactive guanosine diphosphate-bound complex to eIF2-guanosine triphosphate. This reaction is controlled in response to a variety of cellular stresses to allow the rapid r...

متن کامل

Dynamic cycling of eIF2 through a large eIF2B-containing cytoplasmic body: implications for translation control

he eukaryotic translation initiation factor 2B (eIF2B) provides a fundamental controlled point in the pathway of protein synthesis. eIF2B is the heteropentameric guanine nucleotide exchange factor that converts eIF2, from an inactive guanosine diphosphate– bound complex to eIF2-guanosine triphosphate. This reaction is controlled in response to a variety of cellular stresses to allow the rapid r...

متن کامل

Separate domains of the Ran GTPase interact with different factors to regulate nuclear protein import and RNA processing.

The small Ras-related GTP binding and hydrolyzing protein Ran has been implicated in a variety of processes, including cell cycle progression, DNA synthesis, RNA processing, and nuclear-cytosolic trafficking of both RNA and proteins. Like other small GTPases, Ran appears to function as a switch: Ran-GTP and Ran-GDP levels are regulated both by guanine nucleotide exchange factors and GTPase acti...

متن کامل

A Link between the Cytoplasmic Engulfment Protein Elmo1 and the Mediator Complex Subunit Med31

The cytoplasmic Elmo1:Dock180 complex acts as a guanine nucleotide exchange factor (GEF) for the small GTPase Rac and functions downstream of the phagocytic receptor BAI1 during apoptotic cell clearance, and in the entry of Salmonella and Shigella into cells. We discovered an unexpected binding between Elmo1 and the Mediator complex subunit Med31. The Mediator complex is a regulatory hub for ne...

متن کامل

The Drosophila Sec7 domain guanine nucleotide exchange factor protein Gartenzwerg localizes at the cis-Golgi and is essential for epithelial tube expansion.

Protein trafficking through the secretory pathway plays a key role in epithelial organ development and function. The expansion of tracheal tubes in Drosophila depends on trafficking of coatomer protein complex I (COPI)-coated vesicles between the Golgi complex and the endoplasmic reticulum (ER). However, it is not clear how this pathway is regulated. Here we describe an essential function of th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 98 9  شماره 

صفحات  -

تاریخ انتشار 2001